Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Pollut ; 314: 120273, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041734

ABSTRACT

Hourly PM2.5 speciation data have been widely used as an input of positive matrix factorization (PMF) model to apportion PM2.5 components to specific source-related factors. However, the influence of constant source profile presumption during the observation period is less investigated. In the current work, hourly concentrations of PM2.5 water-soluble inorganic ions, bulk organic and elemental carbon, and elements were obtained at an urban site in Nanjing, China from 2017 to 2020. PMF analysis based on observation data during specific pollution (firework combustion, sandstorm, and winter haze) and emission-reduction (COVID-19 pandemic) periods was compared with that using the whole 4-year data set (PMFwhole). Due to the lack of data variability, event-based PMF solutions did not separate secondary sulfate and nitrate. But they showed better performance in simulating average concentrations and temporal variations of input species, particularly for primary source markers, than the PMFwhole solution. After removing event data, PMF modeling was conducted for individual months (PMFmonth) and the 4-year period (PMF4-year), respectively. PMFmonth solutions reflected varied source profiles and contributions and reproduced monthly variations of input species better than the PMF4-year solution, but failed to capture seasonal patterns of secondary salts. Additionally, four winter pollution days were selected for hour-by-hour PMF simulations, and three sample sizes (500, 1000, and 2000) were tested using a moving window method. The results showed that using short-term observation data performed better in reflecting immediate changes in primary sources, which will benefit future air quality control when primary PM emissions begin to increase.


Subject(s)
Air Pollutants , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Nitrates/analysis , Salts/analysis , Pandemics , Seasons , Carbon/analysis , China , Water/analysis , Sulfates/analysis
2.
J Water Health ; 20(6): 972-984, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1887052

ABSTRACT

Sewage comprises multifarious information on sewershed characteristics. For instance, influent sewage quality parameters (ISQPs) (e.g., total nitrogen (TN)) are being monitored regularly at all treatment plants. However, the relationship between ISQPs and sewershed characteristics is rarely investigated. Therefore, this study statistically investigated relationships between ISQPs and sewershed characteristics, covering demographic, social, and economic properties in Tokyo city as an example of a megacity. To this end, we collected ISQPs and sewershed characteristic data from 2015 to 2020 in 10 sewersheds in Tokyo city. By principal component analysis, spatial variability of ISQPs was aggregated into two principal components (89.8% contribution in total), indicating organics/nutrients and inorganic salts, respectively. Concentrations of organics/nutrients were significantly correlated with the population in sewersheds (daytime population density, family size, age distribution, etc.). Inorganic salts are significantly correlated with land cover ratios. Finally, a multiple regression model was developed for estimating the concentration of TN based on sewershed characteristics (R2=0.97). Scenario analysis using the regression model revealed that possible population movements in response to the coronavirus pandemic would substantially reduce the concentration of TN. These results indicate close relationships between ISQPs and sewershed characteristics and the potential applicability of big data of ISQPs to estimate sewershed characteristics and vice versa.


Subject(s)
Sewage , Water Pollutants, Chemical , Nitrogen/analysis , Salts/analysis , Sewage/analysis , Tokyo , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL